
OWLNext Journal Number 1 Jun, 2009

The OWLNext Journal
Number: 1 Jun, 2009

Hello OWLNext users!
This is the first issue of the OWLNext journal. The idea that

motivated is to provide a better way to communicate to the users how to get the most
of OWL & OWLNext framework, how to know the latest technologies and to
provide a better way to reach more users in a easy way.

In this first issue we will introduce a cool technology to
provide a custom, candy and sexy good looking frame for your applications.

Across several issues, I expect to review more and more state-
of-the-art technologies, stay tuned and enjoy.

Sincerely yours
Sebastian Ledesma

Pag. 1

OWLNext Journal Number 1 Jun, 2009

Drawing in the Non-Client area: TCoolFrame.

Since the beginning of Windows era (and actually since the
beginning of Mac era), all Windows applications used to look
pretty the same: square and plain blue.

But there is a way to customize this. Windows provide well
documented messages (really? we´ll see...) that inform to the
application about the events relating to the 'Non-client' area.
The 'Non-client' area is, as his name indicates, the area that not
conforms the 'client area' (that's where your application works by
showing menus, controls and so on). Basically is composed by the
caption bar, the frame's edges, the system and others buttons
(maximize, minimize, close, etc.).

The good thing about the non-client area, it´s that you don´t need
to care about it. All the drawing and behavior is provided by
Windows itself. The bad thing is that in nowadays you need all the
resources available s to build cool interfaces that attracts the
user.

Take a look of applications like Microsoft Messenger, Windows
Media Player or Google Chrome. All these applications provides
interfaces that distinguish them from normal applications.

Pag. 2

OWLNext Journal Number 1 Jun, 2009

Well this feature is very feasible using OWL & OWLNext, let´s see.

The basic message that our application must respond is the
WM_NCPAINT. As you suppose, it´s send when Windows informs you the
need to paint the frame and edges of your window. Tipically you
ignore this message, and it passes across the library until reachs
the DefWindowProc. So our first mission is to catch this message.
We define the EvNCPaint(...) function, ask for the full windows
area by calling GetWindowRect(), create a TWindowDC object and
call the appropiated GDI functions. That´s it. Or so.

After showing our Da-Vinci abilities we will notice that the
system buttons (maximize box, minimize, etc.) are covered by our
drawing, but when we pass over there they show again.

So a first solution working is to have a window without system
buttons. By setting the appropriated windows attributes we avoid
this shammy situation.

But why stop here? We can also draw our system buttons, a candy
ones that express what be can do, and at the same time interact
with Windows so it recognizes them but don´t redraw over.

The solution is to catch WM_NCHITTEST. By attending this message
with the function EvNCHitTest(...), we inform to Windows over what
part of the Non-Client are the mouse it is. Each interesting part
is called 'HitTest'. This allows to provide a custom quantity and
location of system buttons, you receive the coordinates of the
mouse and the only thing you need to do is to respond over what
'hitTest' is the mouse: HTMAXBUTTON, HTMINBUTTON, etc. Now when
you place the mouse over any of the custom-drawed standard box,
just a seconds later a Windows tooltip will show the name, ie:
'Maximize', 'Minimize', 'Close', etc.

Windows is still drawing the classic buttons when we click with
the mouse over a system button, even when they are placed at
different positions (our cutoms vs the classic ones). So to close
the circle we will respond to WM_NCLBUTTUNDOWN and WM_NCLBUTTONUP.
The EvNCLButtonDown(...) function is designed to respond the first
message. It not only receives the mouse position but also over
what 'hittest' the mouse is on. The second one receives the same
parameteres, and usually in this function we take the appropriated
action for the button pressed.

So it's almost done, a final refinement it's to trace the
WM_NCMOUSEMOVE so we can draw a button pressed or not, depending
if we entered into their area or we leave it.

Pag. 3

OWLNext Journal Number 1 Jun, 2009

Additionally other refinement is to detect if we draw our frame as
'activated' or no. The EvNCActivate function respond to
WM_NCACTIVATE and keeps internal state of the active/inactive
value.

So, as nothing can stop us, now we go beyond and want to use a
custom height for the caption bar. How to do it? Just use
EvNCCalcSize and adjust the client area by setting a new top for
the client area. To make easy the things we just update the client
top position with the difference to the standard caption height.

We are ready. At least that's was what I was thinking. A rebel
drawing was hard diyng. Using the excellent WinSight I analyzed
the message saga and noticed a mysterious WM_0xAE. As Winsight was
born in 1991, and last updated in 1996 it seemed the case of a new
message. But MSDN didn't admit its existence.

Google's people faced a similar
situation when creating Chrome,
but they didn't found a way to
replicate the problem. I just
noticed that every time I've
pressed the help button the rebel
drawing appeared after clicking
over the window. Killing the help
button wasn't an acceptable
solution.

More Google searching, and more evidence that we are facing a X-
file case. The mysterious message is an undocumented Windows
message. Those who discovered called it WM_NCUAHCAPTION, and has a
brother which is named WM_NCUAHDRAWFAME. Apparently both were born
with Windows XP and are related to the 'XP-themes' support.
Actually I wasn't able to found exactly which parameters they
carry, but if you don't attend them, they will get the
DefWindowProc and Windows will proceed with a partial standard
drawing that will sluggish your nice drawing.

Now we really are done. I've added a set of cool functions for
convenience of the developer, and reserved something for enhancing
later. The source code should be compatible with the current
version of OWLNext and with OWL 5.0x, and the binary runs in every
version of Win32 (from Win95 to Windows 7), it should also be
compilable with Win16 but obviously I didn't go that far.

You can download the source code trough any of the affiliated
OWLNext sites.

Grow and procreate

Pag. 4

